

Arbitrary Waveform Generator (AWG)

Capabilities and Applications

December 8, 2022

Innovation for the Next Generation

Confidential and Proprietary: Shared under NDA

Target applications

- High-speed SerDes, transceivers, and amplifier validation
- Receiver jitter and noise tolerance testing
- General time domain measurements of high-speed digital communication signals
- Support for compliance PHY and protocol stress testing of MIPI C/D-PHY, MIPI M-PHY, PCIe5, USB4 and others
- Coherent 400ZR module development and validation
- BER and FER tester

Key features and instrument capabilities

- 4-channel Differential AWG (0.1-64 GB) and User Defined Modulation
- Programmable RJ and SJ (dual tones) Jitter injection in AWG mode
- Cross talk emulation by BUJ jitter injection
- ISI emulation (LPF) and de-emphasis in AWG mode
- 2 Dual-Channel (I/Q) Differential PPG (25-64 GB) with NRZ/PAM4 modulation
- Coherent signals generation for QAM modulation
- Built-in 7-tap or 60-tap FFE in PPG mode

Electrical Specifications

Parameter	Specifications
TX Coupling	AC coupled
Channel Impedance (Diff)	100 Ohm
TX/RX connectors	SMPM (M)
TX 3dB Bandwidth	35 GHz
Reference clock Output	Baud Rate/48 or Baud Rate/24 (<1.2GHz max)
Clock out amplitude (SE/Diff)	0.6/1.2 Vpp
Clock input amplitude (SE/Diff)	0.5/1 Vpp
Clock Input Validated Range	150 - 160 MHz
Instrument Automatic Shutoff	85 °C
Recovery from over-temperature shutoff	Manual reboot of the system and instrument temperature below 85 °C
Setup time / Reboot	38 s
Normal Operating Temperature	0 - 65 °C
Power	12 V, 1.5 A

Arbitrary Waveform Generator specifications

Parameter	Specifications
Tx Maximum Amplitude (Sine wave)	1050 mVppd
Bit Rates	1 – 64 Gbps
Vertical Resolution	8 bits
Modulation	User-defined
Pre-programmed Waveforms	PRBS 7, PRBS 9, Square wave, triangular Wave, sinewave, multi-tone, linear chirp, log chirp, sawtooth, exponential rise, exponential decay, Sinc, Lorentz, Surge, Damped Oscillation, Stairs, Serial Data, half-sine, Distorted sinewave and Gaussian.
Memory Depth	33.6 kSa per channel

Pulse Pattern Generator specifications

Parameter	Specifications
Bit Rates	25 – 64 GBd
Modulation	NRZ and PAM4
Tx Maximum Amplitude at 26G	750 mVppd (350 mVppd in calibration mode)
Tx Maximum Amplitude at 53G	500 mVppd (300 mVppd in calibration mode)
Patterns	PRBS 7/9/11/15/20/23/29/31/35/39/41/47
TX Amplitude Adjustment	Steps of 1 mV
TX Equalization	FFE 3 taps or 7 taps
Pre-Emphasis Resolution	±168 steps
Equalizing Filter Spacing	1UI

4080 Product – AWG Examples

Innovation for the next generation

4080 Product – AWG Examples

Surge

Serial Data

Gaussian

Damped Oscillation

Half Sine Wave

Stairs

Distorted Sine Wave

Applications Examples

- USB 4.0 (NRZ, 20 Gbps)
- USB 4.1 (PAM3, 25.6 GBd)
- PCle gen5 (NRZ, 32.5 Gbps)
- PCle gen6 (PAM4, 32.5 GBd)
- ThunderBolt
- Ethernet 112G/Lane

Setup

32.5G NRZ Signal

Confidential and Proprietary: Shared under NDA

26 GBd PAM3 Signal

32.5G PAM4 Signal

PAM4 Editor

Reshaping PAM4 Signal

Ability to reshape PAM4 signal using AWG, with the following:

- Level mismatch ratio (RLM)
- Duty cycle distortion
- Amplitude
- Rise time
- Fall time

Simulation PAM-4 Editor NRZ PRBS9 26.5625G (BW=26 GHz)

Confidential and Proprietary: Shared under NDA

S11 and S21 using 4080

 S11: Canopus source with Chirp function and directional couplers

S21: amplifier bandwidth vs peaking

Compliance Test Patterns – PRBS7 patterns generated in AWG mode

PRBS7 NRZ at 480 Mbps

PRBS7 NRZ at 1.5 Gbps

PRBS7 NRZ at 2.3 Gbps

PRBS7 NRZ at 2.5 Gbps

PRBS7 NRZ at 6 Gbps

PRBS7 NRZ at 6.5 Gbps

PRBS7 NRZ at 10 Gbps

PRBS7 NRZ at 16 Gbps

MIPI C-PHY Compliance Test Patterns

PRBS7 NRZ at 4.5 Gbps

PRBS7 PAM4 at 4.5GS/s

MIPI C-PHY 3-level signaling at 4.5 GS/s

MIPI C-PHY 3-level signaling at 6.5 GS/s

MIPI C-PHY/D-PHY Compliance Testing

Generation of LP (Low Power) and HS (High Speed) signals in AWG mode

Example of HS PRBS7 at 7.14375 GS/s with LP square wave

NRZ

PCIe Gen5 and Gen6 PRBS Patterns – NRZ and PAM4 at 32 GS/s

PAM4

PAM6 Generation in PPG mode

At 1.25 GHz

At 2.5 GHz

PAM6 Generation in PPG mode At 30 GHz

Without Pre-Equalization

With Pre-Equalization

PAM8 Generation in PPG mode

At 1.25 GHz

At 2.5 GHz

PAM8 Generation in PPG mode

At 30 GHz

Without Pre-Equalization

With Pre-Equalization

Custom FFE applied FIR 90 taps - 3 taps per UI

4080 Product – Product Capabilities and Applications

Compliance Test Patterns Generation for PCIe Gen 3 and 4

4080 Product Capabilities for PHY compliance and stressed Eye testing

- Random Jitter (RJ) injection by software
- Sinusoidal Jitter (SJ) injection by software (both single and dual tones options)
- Inter-Symbol Interference (ISI) emulation by software
- Cross-talk emulation by Bounded Uncorrelated Jitter (BUJ) injection by software
- De-embedding s-parameters by applying customized patterns after pre-processing
- Spread-Spectrum Clocking supported for PCIe compliance testing

Jitter Measurements – PRBS 11

Single tone Jitter injection by software for PCIe Gen 3 and Gen 4

Jitter injected by software (60 ps)

PRBS11 – Signal generated with SJ Jitter insertion at ~2 MHz

Jitter injected by software

PRBS11 – Signal generated with SJ Jitter insertion at ~10 MHz

Jitter injected by software

PRBS11 – Signal generated with SJ Jitter insertion at ~100 MHz

Jitter injected by software

PRBS11 – Signal generated with SJ Jitter insertion at ~100 MHz (60 ps) with Amplitude Control

Jitter injected by software (50 ps)

PRBS11 – Signal generated with SJ Jitter insertion at ~2 MHz

With SJ Jitter (5ps)

ML050-M

Innovation for the next generation

Confidential and Proprietary: Shared under NDA

PRBS11 - Signal generated with SJ Jitter insertion at ~10 MHz

Innovation for the next generation

PRBS11 – Signal generated with SJ Jitter insertion at ~100 MHz

With SJ Jitter (5ps)

Innovation for the next generation

Jitter Measurements – PRBS 11

ISI emulation and single tone Jitter injection by software for PCIe Gen 3

PCle Gen3 8Gbps – SJ Jitter and ISI injection at Tx

PRBS11 – Signal generated with SJ Jitter insertion at ~2 MHz and ISI at 6dB

PCle Gen3 8Gbps – SJ Jitter and ISI injection at Tx

PRBS11 – Signal generated with SJ Jitter insertion at ~10 MHz and ISI at 6dB

PCle Gen3 8Gbps – SJ Jitter and ISI injection at Tx

PRBS11 – Signal generated with SJ Jitter insertion at ~100 MHz and ISI at 6dB

PRBS11 – Signal generated with SJ Jitter insertion at ~2 MHz and ISI at 12dB

PRBS11 – Signal generated with SJ Jitter insertion at ~10 MHz and ISI at 12dB

PRBS11 – Signal generated with SJ Jitter insertion at ~100 MHz and ISI at 12dB

Jitter Measurements – PRBS 11

Dual tones Jitter injection by software for PCle Gen 4

PRBS11 – SJ Amplitude 2 ps at ~60 MHz and ~1 MHz with ISI at 6dB

PRBS11 – SJ Amplitude 2 ps at ~60 MHz and ~4 MHz with ISI at 6dB

PRBS11 – SJ Amplitude 5 ps at ~60 MHz and ~1 MHz with ISI at 6dB

PRBS11 – SJ Amplitude 5 ps at ~60 MHz and ~4 MHz with ISI at 6dB

PRBS11 – SJ Amplitude 10 ps at ~60 MHz and ~1 MHz with ISI at 6dB

PRBS11 – SJ Amplitude 10 ps at ~60 MHz and ~4 MHz with ISI at 6dB

PRBS11 – SJ Amplitude 20 ps at ~60 MHz and ~1 MHz with ISI at 6dB

PRBS11 – SJ Amplitude 20 ps at ~60 MHz and ~4 MHz with ISI at 6dB

PCle Gen3 8Gbps – PRBS 9

BUJ injection based on PN5 aggressor signal addition to emulate cross-talk

PCle Gen3 8Gbps – PRBS 9

BUJ injection based on PN5 aggressor (0.1 SNR) signal addition to emulate cross-talk

PCle Gen3 8Gbps – PRBS 9

BUJ injection based on PN5 aggressor (0.2 SNR) signal addition to emulate cross-talk

PCle Gen4 16Gbps – PRBS 9

BUJ injection based on PN5 aggressor (0.1 SNR) signal addition to emulate cross-talk

PCle Gen4 16Gbps – PRBS 9

BUJ injection based on PN5 aggressor (0.2 SNR) signal addition to emulate cross-talk

PCle Gen4 16Gbps – PRBS 7

De-embedding s-parameters by applying customized patterns after pre-processing

4080 Product

Insertion Loss addition using ML4067 (5.9 inches) and De-embedding

4080 Product

Insertion Loss addition using ML4067 (5.9 inches) and De-embedding

PRBS7 16 Gbps – Reference signal

PRBS7 16 Gbps with 5.9 inches

PRBS7 16 Gbps after De-embedding

PCle 6.0 Jitter Measurement Pattern – Requirements

Pattern generation using AT4080

- Jitter Measurement Pattern is a 52 UI repeating sequence consisting of 4 sets of 13 UI per set
- Covers all 12 level transitions
- 12 transitions * 4 sets = 48 edge transitions

PCIe 6.0 Compliance Pattern Generation – Requirements

- Step 1: 64 UI at Level 2 then 64 UI al Level 1
- Step 2: PRBS signal
- Step 3: 64 UI at Level 3, 64 UI at Level 0, then Clock Signal
- Step 4: 64 UI at Level 3 then 64 UI at Level 0

PCIe 6.0 Compliance Pattern – Test results using ML products

PCIe 6.0 Compliance Pattern – Test results using ML products

PCIe 6.0 Compliance Pattern – Test results using ML products

PCIe 6.0 Compliance Pattern – Test results using ML products

Generation of external reference clock from Si5332-EVB with SSC capability

Generation of external reference clock from Si5332-EVB with SSC capability

SSC disabled

SSC enabled

Down Spread 2.5%

Generation of external reference clock from Si5332-EVB with SSC capability

SSC disabled

Down Spread 2.5%

SSC enabled

Generation of external reference clock from Si5332-EVB with SSC capability

SSC disabled

Down Spread

- Hillane

Down Spread 2.5% Center Spread 2.5%

SSC enabled

Generation of external reference clock from Si5332-EVB with SSC capability

SSC disabled

SSC enabled

Generation of external reference clock from Si5332-EVB with SSC capability

SSC disabled

SSC enabled

Generation of external reference clock from Si5332-EVB with SSC capability

SSC disabled

SSC enabled

4080 Mechanical Overview

Available as AT4080, SL4080 and ML4080

 AT4080: customized to fit and function inside an Advantest HSIO test head extender. One cassette can host up to 2xAT4080 SL4080: customized to fit on a backplane on the side of the test head.

4080 Mechanical Overview

Available as AT4080, SL4080 and ML4080

ML4080: integrating the SL4080 into black box

Slices Overview

SL4080 Slices on Carrier | Exploded View

PARTS LIST			
ITEM	QTY	PART NUMBER	DESCRIPTION
1	1	Carrier-PCB	
2	1	HEAT SINK Customized	Customized Cooling Bar
3	1	heat transfer plate Option 2	
4	4	DC	Slice Cards
5	1	Cover	
6	4	TH28-RA To J10	2x8 Coax Cables to J10

Integration on the Side of a Test Head

Innovation for the next generation

North America

48521 Warm Springs Boulevard Suite 310 Fremont, CA 94539, USA +1 510 573 6388

Worldwide

Houmal Technology Park Askarieh Main Road Houmal, Lebanon +961 81 794 455

Asia

7th Floor-2, No. 156 Sec. 2, Dongda Road, North District, Hsinchu City 300, Taiwan (R.O.C.) +886 3 5744 591

UAE

Building 4WA, Office 420 Dubai Airport Freezone Authority, Dubai UAE +971 4 548 7 547